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4 Surfaces in R3

4.1 Definitions

At this point we return to surfaces embedded in Euclidean space, and consider the
differential geometry of these:

We shall not forget the idea of an abstract surface though, and as we meet objects
which we call intrinsic we shall show how to define them on a surface which is not
sitting in R3. These remarks are printed in a smaller typeface.

Definition 11 A smooth surface in R3 is a subset X ⊂ R3 such that each point has
a neighbourhood U ⊂ X and a map r : V → R3 from an open set V ⊆ R2 such that

• r : V → U is a homeomorphism

• r(u, v) = (x(u, v), y(u, v), z(u, v)) has derivatives of all orders

• at each point ru = ∂r/∂u and rv = ∂r/∂v are linearly independent.

Already in the definition we see that X is a topological surface as in Defini-
tion 2, since r defines a homeomorphism ϕU : U → V . The last two conditions
make sense if we use the implicit function theorem (see Appendix 1). This tells
us that a local invertible change of variables in R3 “straightens out” the sur-
face: it can be locally defined by x3 = 0 where (x1, x2, x3) are (nonlinear) local
coordinates on R3. For any two open sets U,U ′, we get a smooth invertible
map from an open set of R3 to another which takes x3 = 0 to x′3 = 0. This
means that each map ϕU ′ϕ−1

U is a smooth invertible homeomorphism. This
motivates the definition of an abstract smooth surface:
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Definition 12 A smooth surface is a surface with a class of homeomorphisms
ϕU such that each map ϕU ′ϕ−1

U is a smoothly invertible homeomorphism.

Clearly, since a holomorphic function has partial derivatives of all orders in
x, y, a Riemann surface is an example of an abstract smooth surface. Similarly,
we have

Definition 13 A smooth map between smooth surfaces X and Y is a contin-
uous map f : X → Y such that for each smooth coordinate system ϕU on
U containing x on X and ψW defined in a neighbourhood of f(x) on Y , the
composition

ψW ◦ f ◦ ϕ−1
U

is smooth.

We now return to surfaces in R3:

Examples:

1) A sphere:
r(u, v) = a sin u sin v i + a cos u sin v j + a cos v k

2) A torus:
r(u, v) = (a + b cos u)(cos v i + sin v j) + b sin uk
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3) A surface of revolution:

r(u, v) = f(u)(cos v i + sin v j) + uk

These are the only compact surfaces it is easy to write down, but the following non-
compact ones are good for local discussions:

Examples:

1) A plane:
r(u, v) = a + ub + vc

for constant vectors a,b, c where b, c are linearly independent.
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2) A cylinder:
r(u, v) = a(cos v i + sin v j) + uk

3) A cone:
r(u, v) = au cos v i + au sin v j + uk

4) A helicoid:
r(u, v) = au cos v i + au sin v j + vk
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5) A developable surface: take a curve γ(u) parametrized by arc length and set

r(u, v) = γ(u) + vγ ′(u)

This is the surface formed by bending a piece of paper:

A change of parametrization of a surface is the composition

r ◦ f : V ′ → R3

where f : V ′ → V is a diffeomorphism – an invertible map such that f and f−1 have
derivatives of all orders. Note that if

f(x, y) = (u(x, y), v(x, y))

then by the chain rule

(r ◦ f)x = ruux + rvvx

(r ◦ f)y = ruuy + rvvy
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so (
(r ◦ f)x

(r ◦ f)y

)
=

(
ux vx

uy vy

) (
ru

rv

)
.

Since f has a differentiable inverse, the Jacobian matrix is invertible, so (r ◦ f)x and
(r ◦ f)y are linearly independent if ru, rv are.

Example: The (x, y) plane
r(x, y) = xi + yj

has a different parametrization in polar coordinates

r ◦ f(r, θ) = r cos θ i + r sin θ j.

We have to consider changes of parametrizations when we pass from one open set V
to a neighbouring one V ′.

Definition 14 The tangent plane (or tangent space) of a surface at the point a is
the vector space spanned by ru(a), rv(a).

Note that this space is independent of parametrization. One should think of the
origin of the vector space as the point a.

Definition 15 The vectors

± ru∧rv

|ru∧rv|
are the two unit normals (“inward and outward”) to the surface at (u, v).

4.2 The first fundamental form

Definition 16 A smooth curve lying in the surface is a map t 7→ (u(t), v(t)) with
derivatives of all orders such that γ(t) = r(u(t), v(t)) is a parametrized curve in R3.

A parametrized curve means that u(t), v(t) have derivatives of all orders and γ ′ =
ruu

′+rvv
′ 6= 0. The definition of a surface implies that ru, rv are linearly independent,

so this condition is equivalent to (u′, v′) 6= 0.
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The arc length of such a curve from t = a to t = b is:∫ b

a

|γ ′(t)|dt =

∫ b

a

√
γ ′ · γ ′dt

=

∫ b

a

√
(ruu′ + rvv′) · (ruu′ + rvv′)dt

=

∫ b

a

√
Eu′2 + 2Fu′v′ + Gv′2dt

where
E = ru · ru, F = ru · rv, F = rv · rv.

Definition 17 The first fundamental form of a surface in R3 is the expression

Edu2 + 2Fdudv + Gdv2

where E = ru · ru, F = ru · rv, G = rv · rv.

The first fundamental form is just the quadratic form

Q(v,v) = v · v

on the tangent space written in terms of the basis ru, rv. It is represented in this basis
by the symmetric matrix (

E F
F G

)
.

So why do we write it as Edu2 + 2Fdudv + Gdv2? At this stage it is not worth
worrying about what exactly du2 is, instead let’s see how the terminology helps to
manipulate the formulas.
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For example, to find the length of a curve u(t), v(t) on the surface, we calculate

∫ √
E

(
du

dt

)2

+ 2F
du

dt

dv

dt
+ G

(
dv

dt

)2

dt

– divide the first fundamental form by dt2 and multiply its square root by dt.

Furthermore if we change the parametrization of the surface via u(x, y), v(x, y) and
try to find the length of the curve (x(t), y(t)) then from first principles we would
calculate

u′ = uxx
′ + uyy

′ v′ = vxx
′ + vyy

′

by the chain rule and then

Eu′2 + 2Fu′v′ + Gv′2 = E(uxx
′ + uyy

′)2 + 2F (uxx
′ + uyy

′)(vxx
′ + . . .

= (Eu2
x + 2Fuxvx + Gv2

x)x
′2 + . . .

which is heavy going. Instead, using du, dv etc. we just write

du = uxdx + uydy

dv = vxdx + vydy

and substitute in Edu2 + 2Fdudv + Gdv2 to get E ′dx2 + 2F ′dxdy + G′dy2. Using
matrices, we can write this transformation as(

ux uy

vx vy

) (
E F
F G

) (
ux vx

uy vy

)
=

(
E ′ F ′

F ′ G′

)
Example: For the plane

r(x, y) = xi + yj

we have rx = i, ry = j and so the first fundamental form is

dx2 + dy2.

Now change to polar coordinates x = r cos θ, y = r sin θ. We have

dx = dr cos θ − r sin θdθ

dy = dr sin θ + r cos θdθ

so that

dx2 + dy2 = (dr cos θ − r sin θdθ)2 + (dr sin θ + r cos θ)2 = dr2 + r2dθ2
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Here are some examples of first fundamental forms:

Examples:

1. The cylinder
r(u, v) = a(cos v i + sin v j) + uk.

We get
ru = k, rv = a(− sin v i + cos v j)

so
E = ru · ru = 1, F = ru · rv = 0, G = rv · rv = a2

giving

du2 + a2dv2

2. The cone
r(u, v) = a(u cos v i + u sin v j) + uk.

Here
ru = a(cos v i + sin v j) + k, rv = a(−u sin v i + u cos v)

so
E = ru · ru = 1 + a2, F = ru · rv = 0, G = rv · rv = a2u2

giving

(1+a2)du2 +a2u2dv2

3. The sphere
r(u, v) = a sin u sin v i + a cos u sin v j + a cos v k

gives

ru = a cos u sin v i− a sin u sin v j, rv = a sin u cos v i + a cos u cos v j− a sin v k

so that
E = ru · ru = a2 sin2 v, F = ru · rv = 0, G = rv · rv = a2

and so we get the first fundamental form

a2dv2 + a2 sin2 vdu2
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4. A surface of revolution

r(u, v) = f(u)(cos v i + sin v j) + uk

has
ru = f ′(u)(cos v i + sin v j) + k, rv = f(u)(− sin v i + cos v j)

so that

E = ru · ru = 1 + f ′(u)2, F = ru · rv = 0, G = rv · rv = f(u)2

gives

(1 + f(u)′2)du2 + f(u)2dv2

5. A developable surface
r(u, v) = γ(u) + vt(u).

here the curve is parametrized by arc length u = s so that

ru = t(u) + vt′(u) = t + vκn, rv = t

where n is the normal to the curve and κ its curvature. This gives

(1 + v2κ2)du2 + 2dudv + dv2

The analogue of the first fundamental form on an abstract smooth surface
X is called a Riemannian metric. On each open set U with coordinates (u, v)
we ask for smooth functions E,F,G with E > 0, G > 0, EG−F 2 > 0 and on an
overlapping neighbourhood with coordinates (x, y) smooth functions E′, F ′, G′

with the same properties and the transformation law:(
ux uy

vx vy

) (
E F
F G

) (
ux vx

uy vy

)
=

(
E′ F ′

F ′ G′

)
A smooth curve on X is defined to be a map γ : [a, b] → X such that ϕUγ

is smooth for each coordinate neighbourhood U on the image. The length of
such a curve is well-defined by a Riemannian metric.
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Examples:

1. The torus as a Riemann surface has the metric

dzdz̄ = dx2 + dy2

as the local holomorphic coordinates are z and z + mω1 + nω2 so that the
Jacobian matric is the identity. We could also multiply this by any positive
smooth doubly-periodic function.

2. The hyperelliptic Riemann surface w2 = p(z) where p(z) is of degree 2m has
Riemannian metrics given by

1
|w|2

(a0 + a1|z|2 + . . .+ am−2|z|2(m−2))dzdz̄

where the ai are positive constants.

3. The upper half-space {x+ iy ∈ C : y > 0} has the metric

dx2 + dy2

y2
.

None of these have anything to do with the first fundamental form of the surface
embedded in R3.

We introduced the first fundamental form to measure lengths of curves on a surface
but it does more besides. Firstly if two curves γ1, γ2 on the surface intersect, the
angle θ between them is given by

cos θ =
γ ′

1 · γ ′
2

|γ ′
1||γ ′

2|
(1)

But γ ′
i = ruu

′
i + rvv

′
i so

γ ′
i · γ ′

j = (ruu
′
i + rvv

′
i) · (ruu

′
j + rvv

′
j)

= Eu′
iu

′
j + F (u′

iv
′
j + u′

jv
′
i) + Gv′iv

′
j

and each term in (1) can be expressed in terms of the curves and the coefficients of
the first fundamental form.

We can also define area using the first fundamental form:

Definition 18 The area of the domain r(U) ⊂ R3 in a surface is defined by∫
U

|ru∧rv|dudv =

∫
U

√
EG− F 2dudv.
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The second form of the formula comes from the identity

|ru∧rv|2 = (ru · ru)(rv · rv)− (ru · rv)
2 = EG− F 2.

Note that the definition of area is independent of parametrization for if

rx = ruux + rvvx, ry = ruuy + rvvy

then
rx∧ry = (uxvy − vxuy)ru∧rv

so that ∫
U

|rx∧ry|dxdy =

∫
U

|ru∧rv||uxvy − vxuy|dxdy =

∫
U

|ru∧rv|dudv

using the formula for change of variables in multiple integration.

Example: Consider a surface of revolution

(1 + f ′(u)2)du2 + f(u)2dv2

and the area between u = a, u = b. We have

EG− F 2 = f(u)2(1 + f ′(u)2)

so the area is ∫ b

a

f(u)
√

1 + f ′(u)2dudv = 2π

∫ b

a

f(u)
√

1 + f ′(u)2du.

If a closed surface X is triangulated so that each face lies in a coordinate neighbour-
hood, then we can define the area of X as the sum of the areas of the faces by the
formula above. It is independent of the choice of triangulation.

4.3 Isometric surfaces

Definition 19 Two surfaces X, X ′ are isometric if there is a smooth homeomorphism
f : X → X ′ which maps curves in X to curves in X ′ of the same length.
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A practical example of this is to take a piece of paper and bend it: the lengths of
curves in the paper do not change. The cone and a subset of the plane are isometric
this way:

Analytically this is how to tell if two surfaces are isometric:

Theorem 4.1 The coordinate patches of surfaces U and U ′ are isometric if and only
if there exist parametrizations r : V → R3 and r′ : V → R3 with the same first
fundamental form.

Proof: Suppose such a parametrization exists, then the identity map is an isometry
since the first fundamental form determines the length of curves.

Conversely, suppose X, X ′ are isometric using the function f : V → V ′. Then

r′ ◦ f : V → R3, r : V → R3

are parametrizations using the same open set V , so the first fundamental forms are

Ẽdu2 + 2F̃ dudv + G̃dv2, Edu2 + 2Fdudv + Gdv2

and since f is an isometry∫
I

√
Ẽu′2 + 2F̃ u′v′ + G̃v′2dt =

∫
I

√
Eu′2 + 2Fu′v′ + Gv′2dt

for all curves t 7→ (u(t), v(t)) and all intervals. Since

d

dt

∫ a+t

a

h(u)du = h(t)
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this means that √
Ẽu′2 + 2F̃ u′v′ + G̃v′2 =

√
Eu′2 + 2Fu′v′ + Gv′2

for all u(t), v(t). So, choosing u, v appropriately:

u = t, v = a ⇒ Ẽ = E

u = a, v = t ⇒ G̃ = G

u = t, v = t ⇒ F̃ = F

and we have the same first fundamental form as required. 2

Example:

The cone has first fundamental form

(1 + a2)du2 + a2u2dv2.

Put
r =

√
1 + a2u

then we get

dr2 +

(
a2

1 + a2

)
r2dv2

and now put

θ =

√
a2

1 + a2
v

to get the plane in polar coordinates

dr2 + r2dθ2.

Note that as 0 ≤ v ≤ 2π, 0 ≤ θ ≤ β where

β =

√
a2

1 + a2
2π < 2π

as in the picture.

Example: Consider the unit disc D = {x+ iy ∈ C|x2 + y2 < 1} with first
fundamental form

4(dx2 + dy2)
(1− x2 − y2)2

55



www.manaraa.com

and the upper half plane H = {u + iv ∈ C|v > 0} with the first fundamental
form

du2 + dv2

v2
.

We shall show that there is an isometry from H to D given by

w 7→ z =
w − i

w + i

where w = u+ iv ∈ H and z = x+ iy ∈ D.
We write |dz|2 = dx2 + dy2 and |dw|2 = du2 + dv2. If w = f(z) where

f : D → H is holomorphic then

f ′(z) = ux + ivx = vy − iuy

and so

|f ′(z)|2|dz|2 = (u2
x+v2

x)(dx2+dy2) = (uxdx+uydy)2+(vxdx+vydy)2 = du2+dv2 = |dw|2.

Thus we can substitute

|dw|2 =
∣∣∣∣dwdz

∣∣∣∣2 |dz|2 (2)

to calculate how the first fundamental form is transformed by such a map.
The Möbius transformation

w 7→ z =
w − i

w + i
(3)

restricts to a smooth bijection from H to D because w ∈ H if and only if
|w − i| < |w + i|, and its inverse is also a Möbius transformation and hence is
also smooth. Substituting (3) and (2) with

dw

dz
=

1
w + i

− (w − i)
(w + i)2

=
2i

(w + i)2

into v−2|dw|2 gives 4(1 − |z|2)−2|dz|2, so this Möbius transformation gives us
an isometry from H to D as required.

4.4 The second fundamental form

The first fundamental form describes the intrinsic geometry of a surface – the expe-
rience of an insect crawling around it. It is this that we can generalize to abstract
surfaces. The second fundamental form relates to the way the surface sits in R3,
though as we shall see, it is not independent of the first fundamental form.
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First take a surface r(u, v) and push it inwards a distance t along its normal to get a
one-parameter family of surfaces:

R(u, v, t) = r(u, v)− tn(u, v)

with
Ru = ru − tnu, Rv = rv − tnv.

We now have a first fundamental form Edu2 + 2Fdudv + Gdv2 depending on t and
we calculate

1

2

∂

∂t
(Edu2 +2Fdudv +Gdv2)|t=0 = −(ru ·nudu2 +(ru ·nv + rv ·nu)dudv + rv ·nvdv2).

The right hand side is the second fundamental form. From this point of view it is
clearly the same type of object as the first fundamental form — a quadratic form on
the tangent space.

In fact it is useful to give a slightly different expression. Since n is orthogonal to ru

and rv,
0 = (ru · n)u = ruu · n + ru · nu

and similarly
ruv · n + ru · nv = 0, rvu · n + rv · nu = 0

and since ruv = rvu we have ru · nv = rv · nu. We then define:

Definition 20 The second fundamental form of a surface is the expression

Ldu2 + 2Mdudv + Ndv2

where L = ruu · n, M = ruv · n, N = rvv · n.

Examples:

1) The plane
r(u, v) = a + ub + vc

has ruu = ruv = rvv = 0 so the second fundamental form vanishes.

2) The sphere of radius a: here with the origin at the centre, r = an so

ru · nu = a−1ru · ru, ru · nv = a−1ru · rv, rv · nv = a−1rv · rv

and
Ldu2 + 2Mdudv + Ndv2 = a−1(Edu2 + 2Fdudv + Gdv2).
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The plane is characterised by the vanishing of the second fundamental form:

Proposition 4.2 If the second fundamental form of a surface vanishes, it is part of
a plane.

Proof: If the second fundamental form vanishes,

ru · nu = 0 = rv · nu = ru · nv = rv · nv

so that
nu = nv = 0

since nu,nv are orthogonal to n and hence linear combinations of ru, rv. Thus n is
constant. This means

(r · n)u = ru · n = 0, (r · n)v = rv · n = 0

and so
r · n = const

which is the equation of a plane. 2

Consider now a surface given as the graph of a function z = f(x, y):

r(x, y) = xi + yj + f(x, y)k.

Here
rx = i + fxk, ry = j + fyk

and so
rxx = fxxk, rxy = fxyk, ryy = fyyk.

At a critical point of f , fx = fy = 0 and so the normal is k. The second fundamental
form is then the Hessian of the function at this point:(

L M
M N

)
=

(
fxx fxy

fxy fyy

)
.

We can use this to qualitatively describe the behaviour of the second fundamental
form at different points on the surface. For any point P parametrize the surface by
its projection on the tangent plane and then f(x, y) is the height above the plane.
Now use the theory of critical points of functions of two variables.
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If fxxfyy−f 2
xy > 0 then the critical point is a local maximum if the matrix is negative

definite and a local minimum if it is positive definite. For the surface the difference
is only in the choice of normal so the local picture of the surface is like the sphere –
it lies on one side of the tangent plane at the point P .

If on the other hand fxxfyy − f 2
xy < 0 we have a saddle point and the surface lies on

both sides of the tangent plane:
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A general surface has points of both types, like this rabbit:

In fact any closed suface X in R3, not just rabbit-shaped ones, have both types of
points.

Proposition 4.3 Any closed surface X in R3 has points at which the second funda-
mental form is positive definite.

Proof: Since X is compact, it is bounded and so can be surrounded by a large
sphere. Gradually deflate the sphere until at radius R it touches X at a point. With
X described locally as the graph of a function f we then have

f − (R−
√

R2 − x2 − y2) ≥ 0

and the first nonzero term in the Taylor series of this is

1

2
(fxxx

2 + 2fxyxy + fyyy
2)− 1

2R
(x2 + y2)

so

Lx2 + 2Mxy + Ny2 ≥ 1

R
(x2 + y2) > 0.

2

It is easy to understand qualitatively the behaviour of a surface from whether LN−M2

is positive or not. In fact there is a closely related function called the Gaussian
curvature which we shall study next.
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4.5 The Gaussian curvature

Definition 21 The Gaussian curvature of a surface in R3 is the function

K =
LN −M2

EG− F 2

Note that under a coordinate change(
ux uy

vx vy

) (
E F
F G

) (
ux vx

uy vy

)
=

(
E ′ F ′

F ′ G′

)
so taking determinants

(uxvy − uyvx)
2(EG− F 2) = (E ′G′ − F ′2).

Since the second fundamental form is a quadratic form on the tangent space just like
the first, it undergoes the same transformation, so the ratio (LN −M2)/(EG− F 2)
is independent of the choice of coordinates.

Examples:

1. For a plane, L = M = N = 0 so K = 0

2. For a sphere of radius a, the second fundamental form is a−1 times the first so that
K = a−2.

We defined K in terms of the second fundamental form which we said describes
the extrinsic geometry of the surface. In fact it only depends on E, F, G and its
derivatives, and so is intrinsic – our insect crawling on the surface could in principle
work it out. It was Gauss who showed this in 1828, a result he was particularly
pleased with.
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What it means is that if two surfaces are locally isometric, then the isometry maps
the Gaussian curvature of one to the Gaussian curvature of the other – for example
the Gaussian curvature of a bent piece of paper is zero because it is isometric to the
plane. Also, we can define Gaussian curvature for an abstract Riemannian surface.

We prove Gauss’s “egregious theorem”, as he proudly called it, by a calculation. We
consider locally a smooth family of tangent vectors

a = fru + grv

where f and g are functions of u, v. If we differentiate with respect to u or v this is
no longer necessarily tangential, but we can remove its normal component to make it
so, and call this the tangential derivative:

∇ua = au − (n · au)n

= au + (nu · a)n

since a and n are orthogonal.

The important thing to note is that this tangential derivative only depends on E, F, G
and their derivatives, because we are taking a tangent vector like ru, differentiating
it to get ruu and ruv and then projecting back onto the tangent plane which involves
taking dot products like ruu · ru = (ru · ru)u/2 = Eu/2 etc.

Now differentiate ∇ua tangentially with respect to v:

∇v∇ua = avu − (n · avu)n +∇v((nu · a)n).

But since we are taking the tangential component, we can forget about differentiating
the coefficient of n. Moreover, since n is a unit vector, nv is already tangential, so
we get:

∇v∇ua = avu − (n · avu)n + (nu · a)nv

Interchanging the roles of u and v and using the symmetry of the second derivative
auv = avu we get

∇v∇ua−∇u∇va = (nu · a)nv − (nv · a)nu = (nu∧nv)∧a.

Now
nu∧nv = λn (4)

so we see that ∇v∇u −∇u∇v acting on a rotates it in the tangent plane by 90◦ and
multiplies by λ, where λ is intrinsic. Now from (4),

λn · ru∧rv = (nu∧nv) · (ru∧rv) = (nu · ru)(nv · rv)− (nu · rv)(nv · ru) = LN −M2
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but also
n · ru∧rv =

√
EG− F 2

which gives
λ = (LN −M2)/

√
EG− F 2. (5)

It follows that LN −M2 and hence K depends only on the first fundamental form.

4.6 The Gauss-Bonnet theorem

One of the beautiful features of the Gaussian curvature is that it can be used to de-
termine the topology of a closed orientable surface – more precisely we can determine
the Euler characteristic by integrating K over the surface. We shall do this by using
a triangulation and summing the integrals over the triangles, but the boundary terms
involve another intrinsic invariant of a curve in a surface:

Definition 22 The geodesic curvature κg of a smooth curve in X is defined by

κg = t′ · (n∧t)

where t is the unit tangent vector of the curve, which is parametrized by arc length.

This is the tangential derivative of the unit tangent vector t and so is intrinsic.

The first version of Gauss-Bonnet is:

Theorem 4.4 Let γ be a smooth simple closed curve on a coordinate neighbourhood
of a surface X enclosing a region R, then∫

γ

κgds = 2π −
∫

R

KdA

where κg is the geodesic curvature of γ, ds is the element of arc-length of γ, K is the
Gaussian curvature of X and dA the element of area of X.

Proof: Recall Stokes’ theorem in R3:∫
C

a · ds =

∫
S

curl a · dS

for a curve C spanning a surface S. In the xy plane with a = (P, Q, 0) this becomes
Green’s formula ∫

γ

(Pu′ + Qv′)dt =

∫
R

(Qu − Pv)dudv (6)
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Now choose a unit length tangent vector field, for example e = ru/
√

E. Then e,n∧e
is an orthonormal basis for each tangent space. Since e has unit length, ∇ue is
tangential and orthogonal to e so there are functions P, Q such that

∇ue = P n∧e, ∇ve = Qn∧e.

In Green’s formula, take a = (P, Q, 0) then the left hand side of (6) is∫
γ

(u′∇ue + v′∇ve) · (n∧e) =

∫
γ

e′ · (n∧e) (7)

Let t be the unit tangent to γ, and write it relative to the orthonormal basis

t = cos θ e + sin θ n∧e.

So
t′ · (n∧e) = cos θ e′ · (n∧e) + cos θ θ′.

The geodesic curvature of γ is defined by κg = t′ · (n∧t) so

t′ = αn + κgn∧t = αn + κg(cos θ n∧e− sin θ e)

and so
κg = e′ · (n∧e) + θ′.

We can therefore write (7) as∫
γ

(κg − θ′)ds =

∫
γ

κgds− 2π.

To compute the right hand side of (6), note that

∇v∇ue = ∇v(P n∧e) = Pv n∧e + P n∧∇ve = Pv n∧e + PQn∧(n∧e)

since nv∧e is normal. Interchanging the roles of u and v and subtracting we obtain

(∇v∇u −∇u∇v)e = (Pv −Qu)n∧e

and from (5) this is equal to K
√

EG− F 2.

Applying Green’s theorem and using dA =
√

EG− F 2dudv gives the result. 2

Note that the extrinsic normal was only used to define n∧e which is one of
the two unit tangent vectors to X orthogonal to e. If the surface is orientable
we can systematically make a choice and then the proof is intrinsic.
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If the curve γ is piecewise smooth – a curvilinear polygon – then θ jumps by the
external angle δi at each vertex, so the integral of θ′ which is 2π in the theorem is
replaced by ∫

γ

θ′ds = 2π −
∑

i

δi =
∑

i

αi − (n− 2)π

where αi are the internal angles. The Gauss-Bonnet theorem gives in particular:

Theorem 4.5 The sum of the angles of a curvilinear triangle is

π +

∫
R

KdA +

∫
γ

κgds.

Examples:

1. In the plane, a line has constant unit tangent vector and so κg = 0. Since the
Gaussian curvature is zero too this says that the sum of the angles of a triangle is π.

2. A great circle on the unit sphere also has κg zero, for example if γ(s) = (cos s, sin s, 0),
then t = (− sin s, cos s, 0) and t′ = −(cos s, sin s, 0) which is normal to the sphere.
Since here K = 1, we have, for the triangle ∆ with angles A, B, C

α + β + γ = π + Area(ABC).

Here is the most interesting version of Gauss-Bonnet:

Theorem 4.6 If X is a smooth orientable closed surface with a Riemannian metric,
then ∫

X

KdA = 2πχ(X)

Proof: Take a smooth triangulation so that each triangle is inside a coordinate
neighbourhood and apply Theorem 4.5 and add. The integrals of κg on the edges
cancel because the orientation on the edge from adjacent triangles is opposite (this is
for Green’s theorem – we use the anticlockwise orientation on γ). The theorem gives
the total sum of internal angles as

πF +

∫
X

KdA.

But around each vertex the internal angles add to 2π so we have

2πV = πF +

∫
X

KdA
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and as our faces are triangles whose sides meet in pairs there are 3F/2 edges. Hence

2πχ(X) = 2π(V − E + F ) = πF +

∫
X

KdA− 3πF + 2πF =

∫
X

KdA.

2

The Gauss-Bonnet theorem and its method of proof give another formula for the
Euler characteristic, involving smooth real-valued functions f : X → R on a closed
surface X. Since X is compact, f certainly has a maximum and a minimum, but may
have other critical points too. Think of a surface in R3 and the function f given by
its height above a plane:

f

This has 2 maxima, 2 minima and 6 saddle points. We shall be able to calculate the
Euler characteristic from these numbers.

First recall that a smooth function f(u, v) has a critical point at a if

fu(a) = fv(a) = 0.

Because of the chain rule, this condition is independent of coordinates: if u =
u(x, y), v = v(x, y) then

fx = fuux + fvvx, fy = fuuy + fvvy

so fu and fv vanish if and only if fx and fy vanish. This means we can unambiguously
talk about the critical points of a smooth function on a surface X.

The Hessian matrix (
fuu fuv

fuv fvv

)
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at a critical point transforms like(
ux uy

vx vy

) (
fxx fxy

fxy fyy

) (
ux vx

uy vy

)
=

(
fuu fuv

fuv fvv

)
and so

(fuufvv − f 2
uv) = (uxvy − uyvx)

2(fuufvv − f 2
uv)

therefore to say that the determinant of the Hessian is non-zero, or positive or nega-
tive, is again independent of the choice of coordinate.

Definition 23 A function f on a surface X has a nondegenerate critical point at
a ∈ X if its Hessian at a is invertible.

We know from calculus that if fuufvv − f 2
uv > 0 and fuu > 0 we have a local min-

imimum, if fuu < 0 a local maximum and if fuufvv − f 2
uv < 0 a saddle point. The

theorem is the following:

Theorem 4.7 Let f be a smooth function on a closed surface X with nondegenerate
critical points, then the Euler characteristic χ(X) is the number of local maxima and
minima minus the number of saddle points.

In the picture, we have χ(X) = 4− 6 = −2 which is correct for the connected sum of
two tori. If we turn it on its side we get one maximum, one minimum and 4 saddle
points again giving the same value: 2− 4 = −2.

g
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Proof: Given a function f on X we can define its gradient vector field:

a =
1

EG− F 2
[(Gfu − Ffv)ru + (Efv − Ffu)rv]

which is normal to the contour lines of f . Away from the critical points we can
normalize it to get a unit vector field e. Surround each critical point by a small
closed curve γi enclosing a disc Ri. Let Y be the complement of the discs, then from
the argument of Theorem 4.4∫

Y

KdA = −
∑

i

∫
γi

e′ · (n∧e)ds

using the negative sign because Y is outside Ri.

Inside Ri we choose a unit vector field f and then we get∫
Ri

KdA =

∫
γi

f ′ · (n∧f)ds

so adding gives ∫
X

KdA =
∑

i

∫
γi

[f ′ · (n∧f)− e′ · (n∧e)]ds.

From the proof of the theorem we had

κg = e′ · (n∧e) + θ′ = f ′ · (n∧f) + φ′

where θ is the angle between γ′ and e and φ between γ′ and f . So the contribution is
just the change in angle between the vector field e and a fixed one f which extends.
This is an integer multiple of 2π so we can evaluate it by deforming to the standard
Euclidean case. A local minimum is f = x2 + y2 which gives

e = (cos θ, sin θ)

and contributes +1, as does the local minimum −(cos θ, sin θ). For a saddle point
f = x2 − y2 which gives

e = (cos θ,− sin θ) = (cos(−θ), sin(−θ)

and contributes −1. 2
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4.7 Geodesics

Geodesics on a surface are curves which are the analogues of straight lines in the
plane. Lines can be thought of in two ways:

• shortest curves

• straightest curves

The first point of view says that a straight line minimizes the distance between any
two of its points. Conceptually this leads to the idea of stretching a string between two
points on a surface until it tightens, and this certainly is one approach to geodesics.
The second approach is however generally easier. A line is straightest because its
tangent vector doesn’t change – it is constant along the line. We generalize this to
a curve on a surface by insisting that the component of t′ tangential to the surface
should vanish. Or....

Definition 24 A geodesic on a surface X is a curve γ(s) on X such that t′ is normal
to the surface.

From Definition 22 this is the same as saying that the geodesic curvature vanishes.

The general problem of finding geodesics on a surface is very complicated. The case
of the ellipsoid is a famous example, needing hyperelliptic functions to solve it –
integrals of dz/

√
p(z) where p(z) is a polynomial of degree 6. But there are cheap

ways to find some of them, as in these examples:

Examples:

1) The normal to a curve in the plane is parallel to the plane, so the condition that
t′ is normal to the plane means t′ = 0 which integrates to r = sa + c, the equation
of a straight line. Geodesics in the plane really are straight lines, then.

2) Take the unit sphere and a plane section through the origin. We saw earlier that
κg = 0 here.

3) Similarly, any plane of symmetry intersects a surface in a geodesic, because the
normal to the surface at such a point must be invariant under reflection in the plane
of symmetry and hence lie in that plane. It is orthogonal to the tangent vector of the
curve of intersection and so t′ points normally.

A useful class of examples is provided by a surface of revolution

r(u, v) = f(u)(cos v i + sin v j) + uk

69



www.manaraa.com

The reflection (x, y, z) 7→ (x,−y, z) maps the surface to itself, as, by symmetry, does
any reflection in a plane containing the z-axis. So the meridians v = const. are
geodesics:

To find the geodesics in general we need to solve a nonlinear system of ordinary
differential equations:

Proposition 4.8 A curve γ(s) = (u(s), v(s)) on a surface parametrized by arc length
is a geodesic if and only if

d

ds
(Eu′ + Fv′) =

1

2
(Euu

′2 + 2Fuu
′v′ + Guv

′2)

d

ds
(Fu′ + Gv′) =

1

2
(Evu

′2 + 2Fvu
′v′ + Gvv

′2)

Proof: We have for the curve γ

t = ruu
′ + rvv

′

and it is a geodesic if and only if t′ is normal i.e.

t′ · ru = t′ · rv = 0.

Now
t′ · ru = (t · ru)

′ − t · r′u
so the first equation is

(t · ru)
′ = t · r′u.

The left hand side is

d

ds
((ruu

′ + rvv
′) · ru) =

d

ds
(Eu′ + Fv′)
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an the right hand side is

t · (ruuu
′ + ruvv

′) = ru · ruuu
′2 + (rv · ruu + ru · ruv)u

′v′ + rv · ruvv
′2

=
1

2
Euu

′2 + (rv · ru)uu
′v′ +

1

2
Guv

′2

=
1

2
(Euu

′2 + 2Fuu
′v′ + Guv

′2)

The other equation follows similarly. 2

It is clear from 4.8 that geodesics only depend on the first fundamental
form, so that geodesics can be defined for abstract surfaces and moreover an
isometry takes geodesics to geodesics.

Examples:

1) The plane: E = 1, F = 0, G = 1 in Cartesian coordinates, so the geodesic equations
are

x′′ = 0 = y′′

which gives straight lines

x = α1s + β1, y = α2s + β2.

2) The cylinder
r(u, v) = a(cos v i + sin v j) + uk

has first fundamental form

du2 + a2dv2 = du2 + d(av)2.

This is isometric to the plane so the geodesics are of the form

u = α1s + β1, v = α2s + β2

which gives a helix

γ = a(cos(α2s + β2) i + sin(α2s + β2) j) + (α1s + β1)k
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The differential equation for geodesics gives us the following general fact:

Proposition 4.9 Through each point P on a surface and in each direction at P there
passes a unique geodesic.

Proof: We are solving a differential equation of the form

u′′ = a(u, v, u′, v′), v′′ = b(u, v, u′, v′)

or equivalently a first order system

u′ = p

v′ = q

p′ = a(u, v, p, q)

q′ = b(u, v, p, q)

and the Cauchy existence theorem (see Appendix B) gives a unique solution with
initial conditions (u, v, p, q), namely the point of origin and the direction. 2

Example: Given a point a on the unit sphere and a tangential direction b the span
of a,b is a plane through the origin which meets the sphere in a great circle through
a with tangent b. Thus every geodesic is a great circle.

There is one case – a surface of revolution – where the geodesic equations can be
“solved”, or anyway, reduced to a single integration. We have

E = 1 + f ′(u)2, F = 0, G = f(u)2

72



www.manaraa.com

and the equations become

d

ds
((1 + f ′2)u′) = f ′(f ′′u′2 + fv′2)

d

ds
(f 2v′) = 0

We ignore the first equation – it is equivalent to a more obvious fact below. The
second says that

f 2v′ = c (8)

where c is a constant. Now use the fact that the curve is parametrized by arc length
(this is an “integral” of the equations), and we get

(1 + f ′2)u′2 + f 2v′2 = 1 (9)

Substitute for v′ from (8) in (9) to get

(1 + f ′2)u′2 +
c2

f 2
= 1

and then

s =

∫
f

√
1 + f ′2

f 2 − c2
du

which is “only” an integration. Having solved this by u = h(s), v can be determined
by a further integration from (8):

v(s) =

∫
c

f(h(t))2
dt.

If we are only interested in the curve and not its arclength parametrization, then (8)
and (9) give

(1 + f ′(u)2)

(
du

dv

)2

+ f(u)2 =
f(u)4

c2

which reduces to the single integration

v =

∫
c

f(u)

√
1 + f ′(u)2

f(u)2 − c2
du.
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4.8 Gaussian curvature revisited

We may not be able to solve the geodesic equations explicitly, but existence of
geodesics through a given point and in a given direction give rise to various nat-
ural coordinate systems, modelled on Cartesian coordinates. Here is one: choose a
geodesic γ parametrized by arc length. Through the point γ(v) take the geodesic
γv(s) which intersects γ orthogonally, and define

r(u, v) = γv(u).

γ

Since ru and rv are orthogonal at u = 0 they are linearly independent in a neighbour-
hood and so are good coordinates.

Now the curves v = const. are parametrized by arc length, so E = 1. These curves
are also geodesics and u is arc length so in the second geodesic equation

d

ds
(Fu′ + Gv′) =

1

2
(Evu

′2 + 2Fvu
′v′ + Gvv

′2)

we put v = const. and u = s which, with E = 1, gives Fu = 0. But F vanishes
at u = 0 because the two geodesics are orthogonal there, hence F = 0 and the first
fundamental form is

du2 + G(u, v)dv2.

In this form the Gaussian curvature is simple:

Proposition 4.10 The Gaussian curvature of the metric du2 + G(u, v)dv2 is

K = −G−1/2(G1/2)uu
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Examples:

1. For the plane dx2 + dy2, G = 1 and K = 0.

2. For the unit sphere with first fundamental form du2 + sin2 udv2, G = sin2 u so

K = − 1

sin u
(sin u)uu =

1

sin u
sin u = 1.

3. For the upper half-space with metric (dx2 + dy2)/y2 put u = log y and v = x and
then we have du2 + e−2udv2, so that

K = −eu(e−u)uu = −eue−u = −1.

Proof: Recall the tangential derivative ∇: the tangential component of the ordinary
derivative. Then since by construction ru is the unit tangent vector of a geodesic, by
the definition of a geodesic its u-derivative is normal so ∇uru = 0.

Consider now ∇vru = Aru + Brv. The dot product with ru gives

Ev/2 = rvu · ru = A

but E = 1 so A = 0.

Using E = 1 and F = 0 the product with rv gives

Gu/2 = rv · rvu = BG.

Now from (5)

(∇v∇u −∇u∇v)ru = K
√

EG− F 2n∧ru = KG1/2(rvG
−1/2) = Krv

But the left hand side (using ∇urv = ∇vru which follows from ruv = rvu) is

−∇u(Gu/2G)rv = −((Gu/2G)u + (Gu/2G)2)rv

which gives the result. 2

With this coordinate system we can characterize surfaces with constant Gaussian
curvature:

Theorem 4.11 A surface with K = 0 is locally isometric to the plane, with K = 1
locally isometric to the unit sphere and with K = −1 locally isometric to the upper
half space with metric (dx2 + dy2)/y2.
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Proof: Use the form du2 + Gdv2.

i) If K = 0 then (G1/2)uu = 0 so G = A(v)u + B(v). But at u = 0, ru and rv are unit
so B(v) = 1. Also, the curve u = 0 is a geodesic – the initial curve γ – with v arc
length. So the geodesic equation

d

ds
(Eu′ + Fv′) =

1

2
(Euu

′2 + 2Fuu
′v′ + Guv

′2)

gives 0 = Gu(0, v)/2 and this means in our case A(v) = 0. The first fundamental
form is therefore du2 + dv2 and by 4.1 this is isometric to the plane.

ii) If K = 1, the equation for G1/2 is

(G1/2)uu + G1/2 = 1

which is solved by G1/2 = A(v) sin u + B(v) cos u. The boundary conditions give
G = cos2 u and the metric du2 + cos2 u dv2 – the sphere.

iii) If K = −1 we have du2 + cosh2 u dv2. The substitution x = v tanh u, y = v sech u
takes this into (dx2 + dy2)/y2. 2
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